The Permutation Classes Equinumerous to the Smooth Class
نویسنده
چکیده
We determine all permutation classes defined by pattern avoidance which are equinumerous to the class of permutations whose Schubert variety is smooth. We also provide a lattice path interpretation for the numbers of such permutations.
منابع مشابه
Pattern avoidance in binary trees
This paper introduces the notion of pattern avoidance in binary trees. We provide an algorithm for computing the generating function that counts the number of n-leaf binary trees avoiding a given binary tree pattern t. Equipped with this counting mechanism, we study the analogue of Wilf equivalence in which two tree patterns are equivalent if the respective trees that avoid them are equinumerou...
متن کاملOn the tenacity of cycle permutation graph
A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation graphs.
متن کاملn ! MATCHINGS , n ! POSETS
We show that there are n! matchings on 2n points without socalled left (neighbor) nestings. We also define a set of naturally labeled (2+2)free posets and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matching...
متن کاملWreath Products of Permutation Classes
A permutation class which is closed under pattern involvement may be described in terms of its basis. The wreath product construction X o Y of two permutation classes X and Y is also closed, and we investigate classes Y with the property that, for any finitely based class X, the wreath product X o Y is also finitely based.
متن کاملMILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags
In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 5 شماره
صفحات -
تاریخ انتشار 1998